

Aerodyne Mini-TILDAS CO_2 Isotope Monitor for $\Delta^{17}O-CO_2$

Direct Spectroscopic Measurement of $\Delta^{17}O - CO_2$ with No Chemical Processing or Separation.

Features:

- \cdot < 0.15 % precision for δ^{18} O in 1 s
- \cdot < 0.15 ‰ precision for δ^{17} O in 1 s
- · Fast time response (10 Hz)
- Direct measurement of CO₂ isotopes in air without sample processing
- Repeatability exceeding 0.03 ‰ for Δ¹7O for a 30 minute measurement including balanced working reference measurements
- Suitable for CO₂ samples derived from carbonate via acid digestion

Rugged, field-ready instruments

Direct absorption spectroscopy allows for highly specific and accurate gas detection

Mid-IR detection enables maximum measurement sensitivity

TILDAS Technology

Aerodyne instruments use tunable infrared laser direct absorption spectroscopy (TILDAS) at mid-IR wavelengths to probe molecules at their strongest "finger-print" transition frequencies. We further enhance sensitivity by employing a patented multi-pass broad-band absorption cell that provides optical path lengths up to 76 m. Direct absorption spectroscopy allows for fast (<1 sec) absolute trace gas concentrations without need for elaborate calibration procedures. Moreover, TILDAS instruments are free of measurement interference from other molecular species, enabling extremely specific detection.

Instrument precision for a column density equivalent to 400ppm ${\rm CO_2}$ mixing ratio and 36 meter optical path length.

Applications

- Determination of atmospheric sources, sinks, and transport through CO₂ isotopic ratios.
- Biosphere exchange.
- Analysis of CO₂ samples derived from marine carbonate samples.
- Stratosphere-troposphere exchange.

Aerodyne CO₂ Isotope Advantages

- Direct measurement of ¹⁷O-CO₂ which is not possible by IRMS.
- Optional automated sample handling systems.
- Time response up to 10 Hz enables eddy covariance studies.
- Powerful TDLWintel software provides flexible instrument control, and real-time data analysis.
- Valve control capable of complex scheduling, and automatic backgrounds and calibrations.
- 19" rack mountable for easy installation.
- Turn-key design allows unattended operation in remote field sites.

Continuous Air Measurement Specifications - High Speed

	CO ₂	δ CO 18 O	δ CO 17 O
0.1 Second	0.15 ppm	0.6 ‰	0.6 ‰
1 Second	0.05 ppm	0.2 ‰	0.2 ‰
60 Second	0.015 ppm	0.04 ‰	0.04 ‰

Note: These measurements are not referenced to a working reference. This configuration supports 10 Hz eddy covariance measurements with a modest sized pump (120 lpm) and a flow rate of 6 slpm.

Discrete Air Sample Specifications - High Precision

	CO ₂	δCO ¹⁸ O	δCO ¹⁷ O
One air sample	0.03	0.06‰	0.06‰
(~15 ml).	ppm		
3 min	' '		
measurement			
10 Air samples	0.01	0.02‰	0.02‰
(total of ~150ml)	ppm		
30 min	' '		
measurement			

Dynamic Range (air)

	min	max
CO ₂	0 ppm	1,000 ppm

Related Instruments

Single laser isotope monitor for δ ¹³C and δ ¹⁸O of CO₂

Dual laser isotope monitor for δ $^{13}\text{C},\,\delta$ ^{18}O and Δ ^{17}O of CO_2

Dual laser monitor for CO₂ (δ ¹³C, δ ¹⁸O) and water (δ ¹⁸O, δ D) isotopes

Installation

19" rack mountable or benchtop

Instrument Operations

Operating temperature: 10 to 35 °C Sample flow rate: 0 to 20 slpm

Instrument Components

Core instrument
Thermoelectric chiller
Keyboard, mouse, and monitor
Vacuum pump (customer specified)
Inlet sampling system (customizable)

Data Outputs

RS-232, USB drive, ethernet

Size, Weight, Power

Dimensions: 440 mm x 660 mm x 6U (267mm) (W x D x H) Weight: 35 kg (core instrument) + 15 kg (chiller) + pump weight Electrical Power: 250 W, 120/240 V, 50/60 Hz (without pump)

Aerodyne specializes in collaboration and custom design. Please contact us if you would like to discuss additional measurement options and applications.

REFERENCES:

Wehr, R., Munger, J.W., McManus, J.B., Nelson, D.D., Zahniser, M.S., Davidson, E.A., Wofsy, S.C. and Saleska, S.R., 2016. Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 534(7609), pp.680-683.

Sakai, S., Matsuda, S., Hikida, T., Shimono, A., McManus, J.B., Zahniser, M., Nelson, D., Dettman, D.L., Yang, D. and Ohkouchi, N., 2017. High-Precision Simultaneous 18O/16O, 13C/12C, and 17O/16O Analyses for Microgram Quantities of CaCO3 by Tunable Infrared Laser Absorption Spectroscopy. Analytical chemistry, 89(21), pp.11846-11852.

McManus, J. Barry, David D. Nelson, and Mark S. Zahniser. "Design and performance of a dual-laser instrument for multiple isotopologues of carbon dioxide and water." *Optics express* 23.5 (2015): 6569-6586.

Wehr, R., et al. "Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO 2 in a temperate forest." *Agricultural and forest meteorology* 181 (2013): 69-84.