Clumped Isotope Monitor for CH₄ Gas Samples

Direct Non-Destructive Spectroscopic Measurement of 13CH₃D with No Isobaric Interference

- Direct measurement of δ^{13}CH₄, δ^{12}CH₃D, and δ^{13}CH₃D
- Precision for δ^{13}CH₃D better than 0.2 ‰ (1σ) in 60 minutes with 5 ml STP sample
- Low operating costs
- Suitable for pure CH₄ samples of any source

Rugged, field-ready instruments

Direct absorption spectroscopy allows for highly specific and accurate gas detection

Mid-IR detection enables maximum measurement sensitivity

TILDAS Technology

Aerodyne instruments use tunable infrared laser direct absorption spectroscopy (TILDAS) at mid-IR wavelengths to probe molecules at their strongest “finger-print” transition frequencies. We further enhance sensitivity by employing a patented multi-pass broad-band absorption cell that provides long optical path lengths. Direct absorption spectroscopy allows for fast (<1 sec) absolute trace gas concentrations without need for elaborate calibration procedures. Moreover, TILDAS instruments are free of measurement interference from other molecular species, enabling extremely specific detection.

Applications

- Clumped methane thermometry
- Methane source attribution
- Non-equilibrium clumped isotope signatures in microbial methane

Aerodyne Clumped CH₄ Isotope Advantages

- Measurement precision comparable to much larger and more expensive IRMS instruments.
- Powerful TDLWintel software provides flexible instrument control, and real-time data analysis.
- Valve control capable of complex scheduling and automatic background and calibrations.
- Optional automated sample handling systems.
- Turn-key design allows unattended operation.
Discrete Sample Specifications for \(\text{CH}_4 \) Clumped Isotope Monitor

<table>
<thead>
<tr>
<th></th>
<th>(\text{CH}_4)</th>
<th>(\delta^{13}\text{CH}_3\text{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>One sample:</td>
<td>22 (\mu)-moles (\text{CH}_4) 6 min measurement cycle</td>
<td>Pure 0.53 ml STP 0.6 %</td>
</tr>
<tr>
<td>10 Samples:</td>
<td>220 (\mu)-moles (\text{CH}_4) 60 min measurement cycle</td>
<td>Pure 5.3 ml STP 0.2 %</td>
</tr>
</tbody>
</table>

Note: These measurements are normalized to a working reference and the time to do so is included in the quoted measurement time. The working reference has a mixing ratio, pressure and matrix composition similar to the sample.

Related Instruments

Dual laser isotope monitor for \(\delta^{13}\text{CH}_4 \) and \(\delta^{12}\text{CH}_3\text{D} \) of \(\text{CH}_4 \)

Dual laser isotope monitor for \(\delta^{13}\text{CH}_4 \) and \(\delta^{12}\text{CH}_3\text{D} \), \(\delta^{13}\text{CH}_2\text{D}_2 \) of \(\text{CH}_4 \)

Data Outputs

RS-232, USB drive, ethernet

Size, Weight, Power

Dimensions: 560 mm x 770 mm x 640 mm (W x D x H)
Weight: 75 kg
Electrical Power: 250-500 W, 120/240 V, 50/60 Hz (without pump)

Installation

19” rack mountable or benchtop

Instrument Operations

Operating temperature: 10 to 35 °C

Instrument Components

Core instrument
Thermoelectric chiller
Keyboard, mouse, and monitor
Vacuum pump (customer specified)
Inlet sampling system (customizable)

Aerodyne specializes in collaboration and custom design. Please contact us if you would like to discuss additional measurement options and applications.

RELATED REFERENCES:
